An Integrated Analytical Modeling Framework For Determining Site-Specific Soil Screening Levels For Pfas
Presenter: Jacob Smith P211
Co-Author(s): Mark L. Brusseau, Bo Guo
Advisor(s): Bo Guo
1Hydrology & Atmospheric Sciences
Soils at many contaminated sites have accumulated a significant amount of per- and polyfluoroalkyl substances (PFAS) and may require remediation to mitigate leaching to groundwater. USEPA’s current approaches for determining soil screening levels (SSLs) were developed for non-PFAS contaminants. Because many PFAS are interfacially-active with unique leaching behaviors in soils, the current non-PFAS-specific soil screening models may not be applicable. Following USEPA’s general methodology, we develop a new modeling framework representing PFAS-specific transport processes for determining site-specific SSLs for PFAS-contaminated sites. We couple a process-based analytical model for PFAS leaching in the vadose zone and a dilution factor model for groundwater in an integrated framework. We apply the new modeling framework to two typical types of contaminated sites. Comparisons with the standard USEPA SSL approach suggest that accounting for the PFAS-specific transport processes may significantly increase the SSL for some PFAS. For the range of soil properties and groundwater recharge rates examined, while SSLs determined with the new model are less than a factor of 2 different from the standard-model values for less interfacially-active shorter-chain PFAS, they are up to two orders of magnitudes greater for more interfacially-active longer-chain PFAS. The new analytical modeling framework provides an effective tool for deriving more accurate site-specific SSLs and improving site characterization and remedial efforts at PFAS-contaminated sites.